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Abstract

The purpose of this study was to document the airflow
characteristics in the diffuser of the NASA Lewis Research
Center Icing Research Tunnel and to determine the effects
of vortex generators on the flow quality in the diffuser. The
results of this study were used to determine how to improve
the flow in this portion of the tunnel so that it can be more
effectively used as an icing test section and to improve
overall tunnel efficiency. The demand for tunnel test time
and the desire to test models that are too large for the test
section were two of the drivers behind this diffuser study.
For all vortex generator configurations tested, the flow qual-
ity was improved.

Several types of data were collected to characterize the
flow in the diffuser with and without vortex generators. Sur-
veys of total and static pressure and total temperature were
made near the diffuser exit using three rakes that were posi-
tioned in several configurations. Vortex generators (VG's)
were mounted near the inlet of the diffuser. The flow-field
surveys were made with the standard tunnel configuration
(no diffuser vortex generators installed) and two vortex-
generator configurations (that is, two vortex-generator axial
locations). The boundary-layer thickness was measured near
the inlet of the diffuser to aid in the placement of the vortex
generators. Axial static-pressure distributions were recorded
along each wall of the diffuser (from the test section inlet
to the diffuser exit) in order to determine the presence and
location of separated flow areas in the diffuser. Flow visual-
ization using smoke traces was performed for the same
purpose.

The tests revealed that the vortex generators in general
had a slight positive effect on the flow quality in the dif-
fuser but also decreased the Mach number at the diffuser
exit. Mach number distributions at the diffuser exit show
that the vortex generators decrease the centerline Mach
number: at a test section Mach number of 0.39 (300 mph),

the Mach number measured at the center of the diffuser exit
plane is 0.16 without vortex generators, 0.14 with the vortex
generators at the downstream station, and 0.11 with the vor-
tex generators at the upstream station. The vortex generators
increased useable test area in the diffuser and decreased the
pressure gradients over the survey plane. These effects on
the diffuser flow field were recorded for both vortex genera-
tor configurations, although greater effects were realized
with the vortex generators at the upstream station. The oper-
ating efficiency of the tunnel was only minimally improved
by the vortex generators: drive fan speed decreased only
0 to 5 rpm with the vortex generators installed.

Introduction

Flow-field surveys have been made in the diffuser of
the NASA Lewis Research Center's Icing Research Tunnel
(IRT) in order to determine the flow quality with and with-
out vortex generators. The purpose of these studies was to
document the existing diffuser flow quality and to assess the
effect of vortex generators on the flow field in the diffuser
and on overall tunnel performance. The vortex generator de-
sign and configurations were based on the successful tech-
niques used in a similar NASA wind tunnel, the NASA
Ames 7- by 10-ft subsonic wind tunnel. This design was
selected because it could be quickly implemented at low
cost and could provide the required information on the gross
effects of VG's on the diffuser flow field. No attempt was
made to optimize the vortex generator configuration during
the study nor to design vortex generators specifically for
this application. The intent of the study was to determine
the general effects of vortex generators on the IRT. Addi-
tional information on the IRT diffuser flow quality is found
in Ref. 1.

This report describes the measurements made, instru-
mentation used, and data obtained in support of the diffuser
flow quality studies.



The authors would like to thank Richard R. Burley of
NASA Lewis for providing the information conceming dif-
fuser design criteria and specific analyses of the IRT dif-
fuser. This information is found in the Diffuser design
section of the current work.

Description of Facility

The NASA Lewis IRT is a closed-loop atmospheric
tunnel with rectangular cross sections (Fig. 1). The airflow
is driven by a 25-ft diameter, 12-blade fan that is powered
by a 5000-hp electric motor. The tunnel test section is 6 ft
high, 9 ft wide, and 20 ft long. The velocity in an empty
test section can be varied from 50 to 300 mph. Eight hori-
zontal spray bars, located upstream of the test section, inject
atomized water into the airflow to create icing conditions
(no icing conditions were studied in these tests). The inside
dimensions of the tunnel at the survey plane (also shown in
Fig. 1.) are 16.58 ft wide and 13.58 ft high. The diffuser is
81.5 ft long, its area ratio is 4.17, and its angle is approxi-
mately 5.3°. Tunnel station zero is located at the inlet of the
test section. A complete description of the facility is con-
tained in Ref. 2.

Instrumentation and Test Hardware

Flow-Field Surveys

Several types of flow-sensing probes and rakes were
used in the flow quality studies, including total- and static-
pressure probes, thermocouples, wall static-pressure taps and
boundary-layer rakes. Each probe type, its associated sup-
port system, and the locations used are described in the
following sections:

Diffuser exit plane surveys.—Three rakes were used to
map the flow field at the diffuser exit: a vertically oriented
rake and two comer-mounted rakes. The following instru-
mentation was mounted to each of these rakes:

Vertical survey rake

19 total pressure probes
16 static pressure probes
16 total temperature probes

Comer survey rakes

7 total pressure probes
5 static pressure probes
5 total temperature probes

Figures 2 and 3 show the probe positions for each rake,
and Fig. 4 shows a typical test setup. To completely map

the flow field, the vertical rake was located at five positions
across the survey plane, and the comer rakes were placed in
each corner of the survey plane. Figure 5 shows the location
of the probes at the survey plane. The total-pressure probe
heads were of a standard design with a 60° chamfer to
allow for flow angularity. The static-pressure probes were
composed of four static-pressure taps connected to a com-
mon manifold. The total temperature was measured using
aspirated thermocouples. The measurement ports of the
total-pressure, total-temperature, and static-pressure probes
were all located in the same plane, although the probes were
staggered along the span of the rake. The total-pressure
probes were mounted through the chord line of the rake
body. The static-pressure probes were mounted through the
upper surface of the rake, and the thermocouples through
the lower surface of the rake body. Details of the instru-
mentation used are given in Fig. 6.

Axial static-pressure distribution.—The static-pressure
distribution along each of the tunnel walls was measured by
means of improvised wall static taps. The wall taps were
made using soft rubber instrumentation tubing belts. Each
belt is composed of 10 individual tubes. A hole exposed to
the flow was cut through the wall of each tube to sense the
static pressure. Several of these tubing strips were taped to
the test section and diffuser walls. By staggering the posi-
tion of the static tap locations for each tube, the axial static-
pressure distribution through the test section and diffuser
was measured. The belts were installed at the vertical
centerline of the test section and diffuser and extended from
the inlet of the test section to the diffuser exit.

Boundary-laver measurements.—One boundary-layer
rake was used to determine the thickness of the boundary
layer at the upstream vortex generator station with the
vortex generators installed. The rake was composed of 15
total-pressure probes, arrayed to provide more information
nearer to the tunnel floor. Figure 7 shows the instrumenta-
tion layout of the rake used to measure the boundary-layer
thickness in the diffuser.

Vortex generators.—The vortex generator setup is
shown in Fig. 8. Each VG is made of sheet metal bent into
a circular arc and welded to a mounting plate. The VG's
were bolted to the tunnel structure. The VG's have a span
(height) of 11 in. and a chord of 14 in. with a 5/8-in. cam-
ber (straight radius) and are set at an angle of attack of 14°
(Fig. 8(c)). The VG's were modeled after VG's used in the
NASA Ames 7- by 10-ft wind tunnel. 3 Four pairs of VG's
were used, one pair on each surface of the diffuser. In the
downstream configuration, the VG's were located at tunnel
station 35 (15 ft downstream of the test section exit); in the
upstream configuration, they were located at tunnel station
26.33 (6 ft 4 in. downstream of the test section exit). The
positions of the VG's at the axial stations are given in
Fig. 8.



Data system.—The standard tunnel data system was
used to record the pressure measurements made during these
studies. The tunnel data system consists of a VAX-based
data-acquisition system and an electronically scanned pres-
sure (ESP) system. For these tests, 5-psid ESP modules
were used. The modules were accurate to within
0.0035 psia.

Flow Visualization

In order to determine whether the flow in the diffuser
remained attached to the tunnel walls, flow visualization
was used. Smoke generators were attached to the north test
section wall and ignited at a test section airspeed of
100 mph. The smoke traces were observed and recorded
from the north side of the diffuser exit. The path of the
smoke traces was recorded using a hand-held video camera.
The vortex generators were not installed in the tunnel during
the flow visualization test. The smoke generators were
small, electrically ignited canisters that produced
100 000 ft3 of smoke over a 5-min period. The smoke gen-
erators were approximately 8 in. long and 1 in. in diameter.

Test Procedures

Figure 1 shows the locations of the survey planes and
the vortex generator stations in the tunnel. The procedure
was to set the diffuser rake positions and make three runs
(velocity sweeps) covering the operating range of the facil-
ity. The VG configuration was changed for each run (one
run without the vortex generators installed and one run each
with vortex generators installed at the upstream and down-
stream stations). This procedure was repeated for each of
the five vertical rake positions described previously. In this
manner, the flow field at the diffuser exit was mapped and
the effects of the vortex generators on the flow field were
documented A similar method was used in collecting the
diffuser axial static-pressure distributions.

Discussion of Results

Diffuser surveys.—Total-pressure profiles measured
along the vertical centerline of the diffuser exit are shown
in Fig. 9 for corresponding to test section velocities Vt. of
100, 200, and 300 mph for each VG configuration. In this
figure, the total pressures measured at the diffuser exit have
been nondimensionalized by the test-section total pressure.
The VG's have the greatest effect on the flow at a Vts of
300 mph. The upstream VG's produced the greater differ-
ence from the baseline (no VG's). Both VG configurations
had a greater effect on the flow near the ceiling of the dif-
fuser than near the floor. For the baseline configuration, the
total pressure is greater along the diffuser floor than at the
ceiling. Both upstream and downstream VG configurations

increase the total pressure near the boundaries such that the
total pressure measured near the ceiling and floor are
approximately equal. The total pressure at the center of the
diffuser exit was reduced approximately 4 percent for the
downstream configuration and about 6 percent for the
upstream configuration at V ts = 300 mph. Similar trends are
seen at the other test section velocities, but the magnitude
of the changes is reduced

Figures 10 to 13 show contour plots of total and static
pressure, total temperature, and Mach number at the diffuser
exit for each VG configuration and each test section veloc-
ity (of 100, 200, and 300 mph). For these contour plots, the
total and static pressure and total temperature measured at
the diffuser exit have been divided by the corresponding test
section settings to account for differences in day-today test
conditions. Test section flow conditions and general trends
and results from the diffuser surveys are listed in Table 1.

The vortex generators had a greater effect on the dif-
fuser exit flow field at conditions corresponding to the high-
est test section velocities. The upstream VG configuration
produced a better total-pressure distribution over the survey
plane. At Vts = 300 mph, the total pressure and Mach num-
ber at the diffuser survey plane were decreased by the
action of the VG's, the uniformity of the flow field at the
survey plane was improved by the use of the VG's. As a
means of comparison, the core size of the survey plane was
estimated for each VG configuration. The core is defined as
the area in which the selected flow-field parameter vanes
less than 0.5 percent from the maximum value. For the total
pressure surveys, the core area was at the center of the sur-
vey plane. For the baseline configuration at V u = 300 mph,
the core size was approximately I  percent of the total area
and increased to 27 percent and to 34 percent for the down-
stream and upstream configurations, respectively. The over-
all total-pressure variation and gradient over the survey
plane were decreased by the use of the vortex generators.
Similar effects were seen in the Mach number data
(Fig. 13), although the increase in core size (not shown in
table) was not as significant as in the total-pressure data.
The static pressure profiles were fairly flat regardless of the
VG configuration, but some improvement was noted for the
upstream VG configuration. Similar effects were noted for

Vts of 100 and 200 mph, although the magnitude of these
effects was less at these velocities.

Axial static-pressure distributions.—The static pressure
distributions along both the north and south diffuser walls
are given in Fig. 14. The static pressures were measured
along the tunnel wall from the test section inlet to the exit
of the diffuser using the static-pressure-tap strips previously
described. The baseline configuration data show a fairly flat
static-pressure distribution through the test section and a
smoothly increasing profile as the flow enters the diffuser.
The slight pressure discrepancy in the profile along the
north wall at tunnel station 80 is due to a wall plate that
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extends into the flow field. This discrepancy is exaggerated
by the presence of the vortex generators as shown in
Figs. 14(b) and (c). The presence of the vortex generators
is also apparent in the pressure distributions at tunnel sta-
tion 26.33 (configuration two) and station 35 (configuration
one). Comparison of the static-pressure distributions show
that the VG's decrease the static pressure in the test section
but increase it at the exit of the diffuser. This effect is more
pronounced for the upstream VG configuration. Data from
the diffuser exit survey tests support this observation. Note
that this variation could also be due to differences in oper-
ating conditions between the three runs required to collect
these data. The data do not indicate the presence of flow
separation from either diffuser wall over the operating range
of the tunnel. The difference in the static pressure levels
between the north and south tunnel walls is caused by day-
to-day changes in the atmospheric conditions (north and
south wall data were collected on different days).

Boundary-layer rake.—Measurements of the boundary-
layer thickness were made on the diffuser floor at the up-
stream VG station with the vortex generators installed. The
boundary-layer rake was mounted along the diffuser center-
line such that it was positioned between the two VG's
mounted on the diffuser floor. The total-pressure distribu-
tions recorded using this rake are presented in Fig. 15.
These data showed that at a test section velocity of 50 mph,
the boundary layer at this location in the diffuser was
4.2 in.; at 150 mph, the boundary layer thickness was
11.0 in.; and above 200 mph, the boundary layer thickness
at the upstream VG station was 15.6 in.

Flow visualization.—Only limited information on the
flow in the diffuser was gleaned from the flow visualization
test. The test setup and procedures required to ignite the
smoke generator lead to a large volume of smoke being
introduced into the flow field before the test condition was
set. The flow visualization test did show that there is a great
deal of flow mixing in the diffuser along the diffuser wall.
Figure 16 is a sketch of the approximate path of the smoke
traces recorded during the flow visualization test. The
smoke traces indicated the areas of flow detached flow from
the north diffuser wall at approximately tunnel station 80
(1/2 to 2/3 of the diffuser length) at a test section velocity
of 100 mph. As noted above, the static-pressure distributions
made along the diffuser walls did not indicate flow separa-
tion in the diffuser. The detached flow shown during the
flow visualization test could have been caused in part by the
presence of the two-man film/observation team at the dif-
fuser exit.

Diffuser design.—Three criteria were used to determine
the effectiveness of the diffuser design: equivalent conical
angle associated with the geometric area ratio, one-
dimensional total-pressure recovery, and one-dimensional
static pressure recovery. The equivalent conical angle
(approximately 6°) and the area ratio (4.17) suggest that

there might be no significant separation based on the stabil-
ity data available for diffusers. Based on the this analysis
and the IRT diffuser equivalent conical angle and area ratio,
the IRT diffuser is defined as "successful" (i.e., flow is
attached almost everywhere and the exit profile is fairly
uniform with low turbulence intensity). The wall static-
pressure distribution support this as there were no indica-
tions of flow separation along the diffuser walls. The ideal
one-dimensional static pressure recovery 5 is approximately
1.1026 for a Mach number of 0.395. The wall static pres-
sure recovery is 1.101 at Mu = 0.395 (Fig. 13), which sug-
gests that the diffusion process is quite effective at 0.9985
(1.101/1.1026). The estimated one-dimensional total-
pressure recovery 6 at a Mach number of 0.395 is 0.99.

Drive fan efficiency.—Figure 17 shows the drive fan
speed required to set empty test section velocities without
VG's installed in the diffuser. Figure 18 shows the differ-
ence in fan speed for the two VG's configurations compared
with the baseline configuration. These data show that there
is very little reduction in fan speed over the operating range
of the tunnel using the vortex generators. The downstream
VG configuration reduced the required fan speed a max-
imum of 5 rpm at test section velocities of 150 and
250 mph. The upstream VG configuration had a smaller ef-
fect on fan speed. Most of the data show little or no change
(0 to 3 rpm) in fan speed. Experimental data show that the
VG's will only increase test section velocity by 2 to 3 mph.

Conclusions

Flow quality studies were conducted in the diffuser
section of the NASA Lewis Research Center Icing Research
Tunnel with and without vortex generators to determine
their effect on flow quality in the diffuser and on overall
tunnel efficiency. Pressure and temperature surveys were
made at the diffuser-exit plane to determine the effect of
vortex generators on the flow field. Two vortex generator
configurations were used in the tests. It was found that the
vortex generators do improve the flow quality in the dif-
fuser. The VG's decrease the Mach number and total pres-
sure at the exit plane and produce more uniform total- and
static-pressure distributions. The upstream VG configuration
had the better effect on the overall flow quality by produc-
ing more uniform pressure profiles and less severe gradients
over the survey plane. Total-pressure and Mach number at
the diffuser exit survey plane were reduced more by the
upstream VG configuration. Axial static pressure measure-
ments made from the test section inlet to the exit of the
diffuser along both walls showed no indication of flow
separation within the diffuser. These measurements also
showed that the VG's have very little effect on the wall
static pressure distribution in the diffuser: The VG's do
increase the static pressure levels slightly but the overall
shape of the distribution is the same. The vortex generators
caused only a minimal gain in the operating efficiency of
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the tunnel. The fan speed was reduced 0 to 5 rpm for tunnel
runs with the vortex generators installed.

2Soeder, R.H.; and Andracchio, C.R.: NASA Lewis Icing
Research Tunnel User Manual. NASA TM-102319,
1990.

Vortex generators have proven effective in the diffusers
of other wind tunnel facilities. These studies have shown
that VG's improve the flow quality at the diffuser exit and
that the vortex generator design and configurations tested
have a minimal effect on the tunnel efficiency (as seen in
the slight reduction in fan speed). Experimental results and
a review of the diffuser geometry indicate that there is pres-
ently good flow quality in the IRT diffuser. This, coupled
with the fact that the effectiveness of vortex generators will
be degraded in icing conditions,' indicate that it is probably
not warranted to optimize the vortex generator design for
use in the IRT diffuser.
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'The vortex generators could be heated to prevent ice from forming, but this would affect the icing cloud in the diffuser
(this is only a consideration if the diffuser is being used as the test chamber).
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7.5

r (ref.) A	 B
Thermo-	 Total
couple	 pressure

and	 probe
static

pressure
probe

location

1	 6.625	 1.000
2	 14.219	 4.250
3	 25.063	 9.000
4	 36.688	 19.438
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6	 - - - -	 42.688
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Control	 plane —/	 /	 Comer

Comer	 room	 A
D	 Spray bar / 	 Shop	 Model

control /	 N	
access door J

room J	 I

\	 Air lock	 l
chamber

Figure 1.—Plan view of Icing Research Tunnel, shop, and control room, showing diffuser exit plane survey location.
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7.50
(ref.)

Probe Al Bt A2 B2
Number T/C and Ps Po T/C and Ps Po

probe probe probe probe
location location location location

1 6.258 2.300 6.438 2.500
2 11.613 4.550 11.813 4.750
3 19.488 7.925 19.688 8.125
4 28.175 15.300 28.378 15.500
5 38.675 23.675 38.875 23.875
6 50.675 44.675 50.875 32.875
7 62.675 56.675 62.875 44.875
8 - - - - 68.675 74.875 56.875
9 - - - - - - - - 86.875 68.875

10 ---- ---- ---- 80.875

7.50	 Datum 0
Ceiling ^- (ref.)	 +A11 -

131 t

T	

- Al

71

Floor
^r - n

(b)	 Upper section	 Lower section	 -- -

Figure 3.-Typical vertical rake used in diffuser exit survey. (Dimensions are in inches. See fig. 5 for rake positions.) (a) Vertical survey rake
mounted in vertical rake position 5. (b) Vertical rake instrumentation layout.
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Probe type

o Total pressure
Total temperature

C1	 o Static pressure

M
3
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Distance of probe
from rake base,

Rake tip

24.00

21.00

18.20

15.60

13.20

11.00

9.00

7.20

5.60

4.20
3.00
2.00
1.20
.60
20

Rake root	 — Reference

Figure 7.—Instrumentation layout of boundary layer
rake used during diffuser flow quality studies.

Figure 4.—Typical test set up used during diffuser exit surveys. Two
comer rakes and one veritcal rake were used to map the flow field
at the diffuser exit. The comer rakes are in positions 1 (upper north
wall) and 4 (lower north wall) and the vertical rake is at position 5
(nearest south wall).

C4	 V1	 V2	 V3	 V4	 V5	 C3

197.75 in tunnel floor
Figure 5.—Rake matrix layout and probe head locations.

Shielded
thermocouple

.8
0.188

^diam, ref.

1.625

7 1.625
1/4 o.d. x 0.035 	 — _ I _
wall tube, 5 req'd. —

" L , — _I	 i1 11

Equally spaced

0.003
0.005

----- -- } I to 0'

60^ 0' /

Total pressure probe details

1/4 o.d. x 0.035 wall x 6.7 long tube
Figure 6.—Cross section of diffuser survey rakes showing probe

details. Rake thickness = 1.25; Chord = 7.53. (All dimensions in
inches.)
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Y2
------------7--------- --- -

X2
X1	

Y1

Downstream Upstream VG
VG con-	 configuration
figuration

Width 123 114
X1 21.25 24.25
X2 80.5 65.6
Height 88.75 79.25
Y1 21.0 24.0
Y2 46.75 31.25

^--14.00 - ^{

11.00

M

^-15.00--~{
°	 2.00	 °

7.00 0.625
(c )	 o	 °

Figure 8.—Vortex generator dimensions and configurations. (a) Setup near diffuser inlet (upstream configuration). (b) Positions. (c) Typical
details. (Material thickness = 0.25 in.)

VG configuration

C Baseline
,Ceiling	 D Downstream

O

	

= 1.0	 Upstream
0
.N

o ,8a
a)a
° .6a
R
g .4
N
C
d
F .2

C
O
z 0

995	 1.000 .990	 .995	 1.000 .98	 .99	 1.000

Total pressure ratio, PO,DIFF/PO,ts

Figure 9.—Total-pressure distribution measured at diffuser exit for
each vortex generator configuration (vertically oriented rake).
(a) Vts = 100 mph. (b) Vts = 200 mph. (c) Vts = 300 mph.

10



L
CL

O	 D
O

u
C

c
rte/. B

-C c

`mac

c

W Contour	 Contour
3 label value

A 0.996
^° B 0.997

C 0.998
D 0.999
E 1.000
F 1.001

C

Baseline
configuration

Bc
CD

E	 B
L	 F
CL

F
O
	

E ) 	J 
Ka I 

H

O
CO

n

G	 DC

B
D	 g

E	 C
F	 F•
F `

I
E`	

I Ka
1l

	

H
G

DC

S	 ^rB

Downstream
VG configuration

JIF

cc°

F

GH
1r

	 D

E

E F	 C^ p E Dn

- E	 c-

F	 D
D' D

F	 G

1 O	 D

E

E D
Dh E	 D

Upstream
VG configuration

E
D

 E

F

E

F^
F

h 	 E

E F	 '^/' D

]F^

/	
G

G	

D 

Contour
label

A
B
C
D

m	 E3	 F
r
0	 G

(n 	 H
I
J
K
L

Contour
label

A
B
C
D
E

CO
	

F
L	 G
S	 H
O

(1)

J
K
L
M

Contour
value
0.980
0.982
0.984
0.986
0.988
0.990
0.992
0.994
0.996
0.998
1.000
1.002

Contour
value
0.990
0.991
0.992
0.993
0.994
0.995
0.996
0.997
0.998
0.999
1.000
1.001
1.002

.r-
CL
E
C.0N

II
r

Figure 10.-Contour plots of total pressure survey data collected at the diffuser a)dt normalized by test section total pressure (PO/PO,ts).
(Downstream views.)

11



Contour Contour
label value

A 1.089
B 1.090
C 1.091

3	 D 1.092s
E 1.093

°	 Frn 1.094
G 1.095
H 1.096
1 1.097
J 1.098

Contour Contour
label value
A 1.0385
B 1.0390

3
C 1.0395L

o	
D 1.0400

0	 E 1.0405
F 1.0410
G 1.0415
H 1.0420
1 1.0425

L
a
E
00
CO

u
N

LQ
E
00N

II

_N

Baseline
configuration

^^D C B	 C\

D

D'	 (

D BV C	

C

C. B A	 C

e B	 U
B

1
1

B

C

C	 AB C^<

Downstream
VG configuration

F^
F E D	 D E

J	 c

E
E

F	 C

F" ^F

E^VFE D
d

eee 	 FFFD

D) ^

E "
J 
^F E

Upstream
VG configuration

G %	 F G H H

G F ^j

	

FJ	 G

	

F^	

CG
G. F	 ` G

	

F \	 E	 E F G G F E

	

{^	 1E

	

F	 ! E

	

SF
	

r s F

	

l	 ^F

L
CL
E
0_o
u
N

Contour	 Contour
label value

3	 A 1.0088

L	 B 1.0090
53	 C 1.0092

D 1.0094
E 1.0196
F 1.0198
G 1.0100
H 1.0102

Figure 11.Contour plots of static pressure survey data collected at the diffuser exit normalized by test section static pressure (PsfPs,ts)•
(Downstream views.)

12



Contour
label

A
B
C

3
	

D
E

0
	

F
G
H

J

Contour
label

A
B

cc
3
	 C

D

E0
0	

FU)

G
H

J

Contour
label

A
B
C

3	 D
L_

0
	 E

O
	

FU)	
G
H

J

Contour
value
0.997
0.998
0.999
1.000
1.001
1.002
1.003
1.004
1.005
1.006

Contour
value
0.996
0.997
0.998
0.999
1.000
1.001

1.002
1.003
1.004
1.005

Contour
value
0.996
0.997
0.998
0.999
1.000
1.001
1.002
1.003
1.004

1.005

.r-
CL

00
co

u
N

L
Q

E
O
0N
n

L
a
E
O
O_

n
N

Baseline
configuration

C	 C\ /^
D	 v	 B

EC

EDI C,

f

/C
E 

	E UD	 /D

D!
F

D

F6

F ^

Fes,	 °D	 Df D

	

G O' E	 f E

C,	 G	 OE(
E

D

E
F	

//^^ 0
F^	 J	 1D	 Ir-

Downstream
VG configuration

E
Dp	 C

C
FJ7

V
E D	 C.'C

	

F ti G+ r	 F	 E	 f

	

s lLJ!	 D
F

G

G^

G
F	 /D

	G,'^^H r	 rD

D'v	 ^

	

H	 D

G

	

F	 ^C

	

FO	
/J

E	 C(

Upstream
VG configuration

E h D	 C'^J	 C

(	 ^D

1

^D
F

	

F 1E	 c/—,

	

D	
D

E	 ^` D
OF EE

	

F	 {F

G

F

D

	

H.	

^	

E

HG FE D l	 DC

FGti .	F G ^ 	/E

OE

	F 	 F

D

F'

	

E	 I-	 D

Figure 12.—Contour plots of total temperature survey data collected at the diffuser exit normalized by test section total temperature
(TcJ0,to. (Downstream views.)

13



Contour
label

A
B
C
D
E
F
G
H

J

Contour
label

A
B
C
D
E
F
G
H

J

Contour
label

A
B
C
D
E
F
G
H

J

Contour
value
0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

Contour
value
0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

Contour
value
0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090

Ca

3

0
0

ro
3

O
V)

CO

3.

L
0
rn

r
CL
E
0
0
ch
n

s
CL
E
0
0
N

11

z
a

00
n
y

Baseline
configuration

	

D•D'	 'B
FCD

	

G	 E

	

G	 Fi

F
E

frD

	E	 C

	

E	 F

D

D-
C

.D

C	 C C

	

E	 D

	

E	 F

D

D

CBC
%

Downstream
VG configuration

E F	 D D'^

G

QH
	

EF

,^ G
E

D E	^C C

E

D

E

D ^ D ^^- C

D D c—
	

C

E

v	 rD

E'	 I`

D D —^C C

Upstream
VG configuration

	

E E D ^^	 D

F
E

F
FE
	 rtiD	 E

p	 D	 °^i C	 C
E

C E D

.,D	 D	 r4C

D ^ D ^^C ^D

E

E	 r

D

Ep	
D

—FEK

Figure 13.—Contour plots of Mach number data collected at diffuser exit.

14



Test section	 Test section
Inlet	 Exit	 Inlet	 Exit

14.4

14.2

m 14.0.N
CL

a
N 13.6

0 13.4
U
ro 13.2

13.0

12.8

12.6
-20	 0	 20	 40	 60	 80	 100	 -20	 0	 20	 40	 60	 80	 10C

14.6

14.4

ca 14.2
N
a 14.0
CT

N 13.8N
m
a 13.6
U

13.4
U) 

13.2

13.0

12.8

14.4

14.2

14.0
N

13.8

w 13.6
N

o_ 13.4

ro 13.2

13.0

12.8

12.6
-20	 0	 20	 40	 60	 80	 100	 -20	 0	 20	 40	 60	 80	 100

Tunnel station (TS), ft 	 Tunnel station (TS), ft
Figure 14. Static-pressure distributions along the north and south test section and diffuser walls. (a) North wall; baseline configuration.

(b) North wall; downstream VG configuration. (c) North wall; upstream VG configuration. (d) South wall; baseline configuration. (e) South
wall; downstream VG configuration. (f) South wall; upstream VG configuration.

14.6

14.4

14.2
N
a

14.0

N 13.8
a)
EL 13.6
U
ro 13.4

N 13.2

13.0

128

14.14

14.2

co 14.0
N
CL

6

0 13.6
N

a 13.4
U
ro 13.2

13.0

12.8

12.6
-20	 0	 20	 40	 60	 80	 100	 -20	 0	 20	 40	 60	 80	 100

14.6

14.4

m 14.2.N

14.0

y 13.8
d
EL 13.6
U

ro 13.4
U)

13.2

13.0

128

15



24
	

IRT - Boundary layer rake

Vts

c 18	 Q 50
♦ 100

o	 q 1500
n 200

2 12	 O 250
• 300

U
Cm
in
0 8

0 1 db_==i rte{ n" ' B`J V̂& 1

13.5	 13.7	 13.9	 14.1	 14.3	 14.5
Total pressure, psia

Figure 15.—Boundary-layer distributions (total pressure) made at
diffuser inlet (upstream VG configuration).

Possible
Smoke	 detached	 Camera
source	 flow or mixing

Test section?

Smoke diffuses —

Figure 16.—Diagram of diffuser flow visualization test set up and
approximate path of smoke traces.

Difference
in fan speed

from baseline
configuration

for—

Upstream VG configuration
^{E	 Downstream VG configuration

500

450

F 400
CL
0 350

ai 300
CL
c 250
CO
LL 200

150

100

50
40	 80	 120	 160	 200	 240	 280

Test section velocity, mph

Figure 17.—Drive fan speed required to set corresponding
empty test section velocities. Data from a clean (no vortex
generators) tunnel.

5

E 4
a

3
a

2
CL

c 1

c 0
a)
O) -1
t
U -2

40	 80	 120	 160	 200	 240	 280

Test section velocity, mph

Figure 18.—Difference in drive fan speed to produce empty
test section velocities with the vortex generators installed.
(Postitve numbers indicate decrease in fan speed.)

16



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. 	 Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA	 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 	 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE TYPE AND DATES COVERED
January 1994

F-REPORT
Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Flow Quality Studies of the NASA Lewis Reserch Center Icing Research
Tunnel Diffuser

WU-505-62-846. AUTHOR(S)

E. Allen Arrington, Mark T. Pickett, and David W. Sheldon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center E-8051
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, D.C. 20546-0001 NASA TM— 1063 11

11. SUPPLEMENTARY NOTES
E. Allen Arrington, Sverdrup Technology, Inc., Lewis Research Center Group, 2001 Aerospace Parkway, Brook Park, Ohio
44142, and Mark T. Pickett and David W. Sheldon, NASA Lewis Research Center. Responsible person, David W. Sheldon.
(216)433-8507

12a. DISTRIBUTIOWAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 09

13. ABSTRACT (Maximum 200 words)

The purpose of this study was to document the airflow characteristics in the diffuser of the NASA Lewis Research
Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The
results of this study were used to determine how to improve the flow in this portion of the tunnel so that it can be more
effectively used as an icing test section and such that overall tunnel efficiency can be improved The demand for tunnel
test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser
study. For all vortex generator configurations tested, the flow quality was improved.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Wind tunnel; Flow quality; Flow field measurement; Diffuser; Vortex generator 18

16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 	 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


